

Mathematical Modeling of Groundwater Pollution

With 104 Illustrations

Translation by Fan Pengfei and Shi Dehong

Originally published by Geological Publishing House, Beijing, People's Republic of China

Printed on acid-free paper

(2) 1996 Springer-Verlag New York for, and Geological Publishing House. All rights merevel. The work may not be translated, or copied in whole or in part is written permassion of the publisher (Springer-Verlag New York, Ind., 175 Fifth A. York, MY 10010, USAI, eccept for brief excerpts in connection with inviews ar whether Use in connection with any form of information storage and retrieval, electronic a computer software, or by similar or distingiar methodology new known or hereits is forbidden.

The use of accoral descriptive names, tridle names, trademarks, etc., in this parts if the former are not especially identified, is not to be taken as a sign that an a understood by the Trude Marks and Merchandine Marks Act, may secondingly have anyone.

Production managed by Laura Carlson, manufacturing supervised by Jöhns Ta Typetet by Asco Trade Typesetting Ltd., Hong Kong. Printed and bound by Bram-Brumfeld, Inc., Ann Arbor, MI. Printed in the United States of America.

987654321

18BN 0-387-94212-3.Springer-Varlag New York Berlin Heidefberg 18BN 3-540-54212-2.Springer-Varlag Berlin Heidefberg New York

Contents

Preface	vii
	VII
1 Introduction	1
1.1 Groundwater Quality	1
1.2 Groundwater Quality Management	2
1.3 Groundwater Modeling	4
2 Hydrodynamic Dispersion in Porous Media	9
2.1 Physical Parameters	9
2.1.1 Spatial Average Method	9
2.1.1 Spatial Average Method	12
2.1.2 Philid, Medium and State Parameters	20
	20
2.2.1 Hydrodynamic Dispersion Phenomena	20
2.2.2 Mechanisms of Hydrodynamic Dispersion	21
2.2.3 Mass Transport in Porous Media	23
2.3 Mass Conservation and Convection-Diffusion Equations in a	24
Fluid Continuum	24
2.3.1 Diffusive Velocities and Fluxes	24
2.3.2 Mass Conservation Equation of a Component	25
2.3.3 Convection-Diffusion Equations in a Fluid Continuum	26
2.4 Hydrodynamic Dispersion Equations	27
2.4.1 The Average of Time Derivatives	27
2.4.2 The Average of Spatial Derivatives	29
2.4.3 Advection-Dispersion Equations in Porous Media	30
2.4.4 The Integral Form of Hydrodynamic Dispersion Equations .	32
2.5 Coefficients of Hydrodynamic Dispersion	33
2.5.1 Coefficients of Longitudinal Dispersion and Transverse	
Dispersion	33
2.5.2 Coefficients of Mechanical Dispersion and Molecular	
Diffusion	36
2.6 Extensions and Subsidiary Conditions of the Hydrodynamic	
Dispersion Equation	39

2.6.1 Hydrodynamic Dispersion Equations in Orthogonal	
Curvilinear Coordinate Systems	39
2.6.2 Extensions of Hydrodynamic Dispersion Equations	41
2.6.3 Initial and Boundary Conditions	44
3 Analytical Solutions of Hydrodynamic Dispersion Equations .	50
3.1 Superposition of Fundamental Solutions	
3.1.1 The Fundamental Solution of a Point Source	
3.1.2 Superposition Principle and Image Method	52
3.1.3 Continuous Injection in a Uniform Flow Field	54
3.2 Some Canonical Problems Having Analytical Solutions	56
3.2.1 One-Dimensional Dispersion Problems	
3.2.2 Two- and Three-Dimensional Dispersion Problems	61
3.2.3 Radial Dispersion Problems	66
3.2.4 Dispersion Problems in Fractured Rock	69
4 Finite Difference Methods and the Method of Characteristics f	or
Solving Hydrodynamic Dispersion Equations	
4.1 Finite Difference Methods	
4.1.1 Finite Difference Approximations of Derivatives	
4.1.2 Finite Difference Solutions of One-Dimensional Dispers	
Problems	
4.1.3 Numerical Dispersion and Overshoot	
4.1.4 Finite Difference Solutions of Two- and Three-Dimensio	
Dispersion Problems	
4.2 The Method of Characteristics	
4.2.1 Basic Idea of the Method of Characteristics	
4.2.2 Computation of the Advection Part	
4.2.3 Computation of the Dispersion Part	
4.2.4 Treatment of Boundary Conditions and Sink/Source Te	
4.2.5 The Random-Walk Model	91
5 Finite Element Methods for Solving Hydrodynamic Dispersion	
Equations	
5.1 Finite Element Methods for Two-Dimensional Problems	
5.1.1 The Weighted Residual Method	
5.1.2 Finite Element Discretization and Basis Functions	
5.1.3 High-Order Elements and Hermite Elements	
5.1.4 Isoparametric Finite Elements	
5.1.5 Treatment of Boundary Conditions	
5.2 The Multiple Cell Balance Method	
5.2.1 Governing Equations	
5.2.2 An Algorithm Based on Multiple Cell Balance 5.2.3 Comparing with the Finite Element Method	
5.2.4 The Test of Numerical Solutions	
5.2.4 The rest of Numerical Solutions	123

5.3 Finite Element Methods for Three-Dimensional Problems	125
5.3.1 The Galerkin Finite Element Method	125
5.3.2 Triangular Prism Elements and Associated Basis Functions	132
5.3.3 A Mixed Finite Element-Finite Difference Method	135
5.3.4 The Multiple Cell Balance Method	138
5.4 The Solution of Finite Element Systems	143
5.4.1 Features of Finite Element Systems and Direct Solutions	143
5.4.2 Point Iteration Methods	144
5.4.3 Block and Layer Iteration Methods	146
6 Numerical Solutions of Advection-Dominated Problems	149
6.1 Advection-Dominated Problems	149
6.1 Advection-Dominated Problems 6.1.1 Fourier Analysis of Numerical Errors	149
6.1.2 Eulerian and Lagrangian Reference Frames	154
6.2 Upstream Weighted Methods	155
6.2.1 Upstream Weighted Finite Difference Methods	155
6.2.2 Upstream Weighted Finite Element Methods	
6.2.3 The Upstream Weighted Multiple Cell Balance Method	163
6.3 Moving Coordinate System and Moving Point Methods	172
6.3.2 Element Deformation Methods	
6.3.3 Moving Point Methods	
6.4 The Modified Methods of Characteristics	177
6.4.1 The Single Step Reverse Method	177
6.4.2 The Hybrid Single Step Reverse-Moving Point Method	180
6.4.3 The Hybrid Moving Point-Characteristics Finite Element	
Method	182
7 Mathematical Models of Groundwater Quality	187
7.1 The Classification of Groundwater Quality Models	187
7.1.1 Hydrodynamic Dispersion Models	187
7.1.2 Coupled Equations of Groundwater Flow and Mass	
Transport 7.1.3 Pure Advection Models	191
7.1.3 Pure Advection Models	193
7.1.4 Lumped Parameter Models 7.1.5 Criteria of Model Selection	196
7.1.5 Criteria of Model Selection	199
7.2 Model Calibration and Parameter Estimation	201
7.2.1 Parameter Identification of Advection-Dispersion Equations	201
7.2.2 Field Experiments for Determining Dispersivities	204
7.2.3 The Relationship Between Values of Dispersivity and Scales	
of Experiment	213
7.2.4 Determination of Mean Flow Velocities	217
7.2.5 Identification of Retardation Factor and Chemical Reaction	
Parameters	218
7.2.6 Identification of Pollutant Sources	219
7.2.7 Computer Aided Design for Field Experiments	220

7.3 Coupled Inverse Problems of Groundwater Flow and Mass	
Transport	223
7.3.1 Definition of Coupled Inverse Problems	223
7.3.2 Variational Sensitivity Analysis	226
7.3.3 Identifiability	231
7.3.4 Experimental Design	234
7.4 Statistic Theory and Uncertainty Analysis	235
7.4.1 The Statistic Theory of Mass Transport in Porous Media	235
7.4.2 The Heterogeneity of Natural Formations	236
7.4.3 Stochastic Advection-Dispersion Equations and	
Macrodispersivities	237
7.4.4 Uncertainties of Groundwater Quality Models	238
7.4.5 Conditional Simulations and Stochastic Inverse Problems	243
8 Applications of Crowndowster Orality Medels	247
8 Applications of Groundwater Quality Models	247
	241
8.1.1 The General Procedure of Studying Groundwater Pollution Problems	247
	247
8.1.2 Groundwater Pollution of Saturated Loose Aquifers	250
8.1.3 Groundwater Pollution of Saturated-Unsaturated Aquifers .	255
8.1.4 Groundwater Pollution of Fractured Aquifers	250
8.2 Seawater Intrusion	262
	262
8.2.2 Fresh Water-Sea Water Interfaces	204
8.2.3 Numerical Methods for Determining the Location of	260
Interfaces	269
8.2.4 Determination of the Transition Zones	271 275
8.3 Groundwater Quality Management Models	275
8.3.1 Groundwater Hydraulic Management Models	275
8.3.2 Management of Groundwater Pollution Sources	
8.3.3 Project Models of Groundwater Quality Management	284
8.3.4 Conjunctive Use and Water Resources Planning	287
8.3.5 Remediation of Polluted Aquifers	288
8.3.6 The Reliability of Management Models	289
8.3.7 Economic and Political Models in Groundwater	201
Management	291
Conclusions	295
Appendix A The Related Parameters in the Modeling Mass	
Transport in Porous Media	297
err i be scrutter con tentere sconner	
Appendix B A FORTRAN Program for Solving Coupled	
Groundwater Flow and Contaminant Transport	200
Problems	300
B.1 Features and Assumptions	300
B.2 Program Structure	301

Contents xv

B.3 Input Data Files	301
B.4 Output Data Files	305
B.5 Floppy Disk and Demo Problem	306
B.6 Source Programs	307
References	355
Index	370

Groundwater Quality

chemical and biological constituents contained in groundwater depend two inclors the natural environment of groundwater storage and moveit, and human activities. Precipitation influention and surface water perstion are the natural sources of groundwater. The total dissolved solids of of precipitation is generally very low, but its chemical components will manged when influented through soil beds by a series of actions, such as alon, exidation, reduction, ion involvings, and so on. The influencion and colation water will be involved in general-water movements in both the total and the interval directions in the aquifar. During this process, the TDS coundwater will continually increase as rocks and minerals are desolved the water. Human activities may change the natural process and cause influenter. Groundwater, therefore, should be looved upon as a mathimant fluid. The content of each component in groundwater can be used matter. Groundwater, therefore, should be looved upon as a mathment fluid. The content of each component in groundwater can be used by its concentration, i.e., a must of certain component contained in diameter (M/L^2). If the concentration of component is is written then the *stoutiand of water quality* for a certain use can be written in the stouter of water (M/L^2). If the concentration of component is is written that the *stoutiand of water quality* for a certain use can be written in the stouter of the stouter of terms.

$$C_{n,min} \leq C_n \leq C_{n,min}$$

 $(\alpha = 1, 2, \dots, n).$

 $a_{\rm min}$ and $C_{\rm x,met}$ are the given lower and upper limits, respectively, of components $a_{\rm x}$ and a is the total number of components $a_{\rm x}$ and a is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x}$ and $a_{\rm x}$ is the total number of components $a_{\rm x}$ and $a_{\rm x$

erroundwater quality fincleding its physical, chemical, and histogical and has been changed so that it is no longer suited to the previous as the groundwater is said to be polluted.

secondwater is housed under the land surface, it is not no easily so the surface water, because of its low flow rate, the pollutants